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Abstract

A numerical algorithm for simulation of acoustic noise generation, based on collocated grids, is described. The

approach, that was originally developed using a viscous/inviscid decomposition technique, involves two steps com-

prising a viscous incompressible flow part and an inviscid or viscous acoustic part. On collocated grids the inviscid

solution is found to be mesh dependent due to unavoidable extrapolations of the acoustic pressure and density at walls,

differing from the case on staggered grids where no extrapolation is needed. The situation is most pronounced when a

sharp body is considered. A viscous acoustic algorithm is proposed to overcome the difficulty. Numerical computations

of flows past a circular cylinder and a NACA 0015 airfoil show that a viscous/viscous coupling is more natural and gives

excellent results as compared to those obtained in previous computations based on viscous/inviscid coupling on

staggered grids. The model is applied to the problem of an airfoil exposed to a gust and results are compared to the

numerical results of Lockard and Morris [AIAA J. 36(6) (1998) 907].
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1. Introduction

Computational aeroacoustics (CAA) is now becoming a common tool for predicting noise generated
from flows, such as helicopter, wind turbine and jet flows. Noise prediction codes can be divided into two

categories. One is based on the Lighthill acoustic analogy [1] resulting in linearized wave equations com-

bined with sound sources, such as monopoles, dipoles and quadrupoles [2–7] and the other is based on

solving the compressible Euler/Navier–Stokes equations [8–13,15]. The former models establish direct re-

lationship between noise sources and a far-field receiver. Since reflection and diffraction and other non-

linear interaction effects are not included in linear models, these models are used to predict far-field noise
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where non-linear effects can be neglected. The latter models employ a computational mesh surrounding all

solid walls and solve the Euler/Naver–Stokes equations in a domain where non-linear effects are included.

Due to limitation of computer resources, it is difficult to compute propagation over long distances and
therefore these models are preferable to study near-field acoustics.

For near-field noise at high Mach numbers, Tam and coworkers [8,9] developed a compressible Euler/

compressible Navier–Stokes coupling method. For low Mach number flows, Hardin and Pope [11] pro-

posed a non-linear two step procedure for aeroacoustic computations which is suitable for both generation

and propagation. Based on the pioneering work of Hardin and Pope, a general aeroacoustic model was

recently developed by the authors for laminar and turbulent flows [13–15].

The developed scheme was based on staggered grids and works well for simple flows (cylinder flows and

airfoil flows). For general non-orthogonal meshes, however, staggered techniques tend to become rather
complex, either storing all velocity components on every cell face, or introducing derivatives of the grid

curvature through Christoffel symbols. In order to avoid these difficulties, many researchers have investi-

gated non-staggered methods. About 20 years ago, Rhie and Chow [16] proposed a procedure using a

momentum based interpolation for the cell face mass fluxes in the continuity equation which closely imi-

tates the staggered practice by letting mass conservation be expressed in terms of mass fluxes across cell

interfaces. The mass fluxes are driven by 1d pressure differences across the faces. Hence, velocity–pressure

decoupling cannot occur. The Rhie–Chow procedure gives excellent results for steady-state flow problems

where a large local time step is used. For unsteady flow calculation, however, when using small time steps,
pressure oscillations may still appear. Recently, we have shown that spurious oscillations can be suppressed

by changing the flux interpolation scheme [17] and that the technique can be further refined by using the

SIMPLEC scheme to obtain faster convergence for steady computations as well as more consistent solu-

tions for unsteady computations [18].

The focus of the paper is to develop a suitable method that is based on collocated grids for acoustic

computations and to obtain smooth compressible solutions, which are primarily governed by the Euler

equations, perturbed about an incompressible viscous flow.

The paper is organized as follows. In Section 2, the governing equations for flows and acoustic waves are
given. The numerical implementation on collocated meshes is given in Section 3. Results for acoustic waves

generated from flows past a circular cylinder and an airfoil are presented in Section 4.
2. Formulation of the problem

Based on the splitting approach introduced by Hardin and Pope [11], a numerical algorithm on stag-

gered grids for acoustic noise generation was developed by Shen and Sørensen [14,15]. The algorithm
consists of two steps comprising a viscous incompressible flow part and an inviscid acoustic part. In the

present work, this approach has been further refined by also retaining the viscous terms in the acoustic set

of equations, in the following referred to as perturbed equations. Indeed, it can be shown that numerical

irregularities appearing near-solid boundaries can be attributed to the use of inviscid perturbed equations.

On the other hand, retaining the viscous terms in the perturbed equations, the solution can be treated

consistently everywhere by the splitting.

The basic flow equations are described in early publications [13–15], hence we only consider the per-

turbed equations. The basic formulation is based on the following decomposition of the compressible
variables

ui ¼ Ui þ u0i; ð1Þ
p ¼ P þ p0; ð2Þ
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q ¼ q0 þ q0; ð3Þ

where P , q0 and Ui are the incompressible pressure, density and velocity components, respectively and u0i, p
0

and q0 are the fluctuating velocity, pressure and density about these incompressible variables, respectively.

Introducing the decomposed variables into the compressible Navier–Stokes equations, the final perturbed

equations read

oq0

ot
þ ofi
oxi

¼ 0; ð4Þ
ofi
ot

þ o

oxj
½fiðUj þ u0jÞ þ q0Uiu0j þ p0dij� ¼

os0ij
oxj

; ð5Þ
op0

ot
� c2

oq0

ot
¼ � oP

ot
; ð6Þ

where the acoustic co-velocity components fi ¼ qu0i þ q0Ui and perturbed viscous stresses s0ij ¼ lðou0i=
oxj þ ou0j=oxi � 2

3
dijou0k=oxkÞ. In contrast to the former inviscid formulation, the viscous stresses are retained

in Eq. (5). Apart from modeling correctly the influence of viscosity, this greatly simplifies the treatment of

the boundary conditions. In fact, the extrapolation needed for the boundary equations in an inviscid

formulation on a non-staggered mesh leads to spurious noise sources, especially near-sharp edges.

The diffusion terms can be expressed in terms of the acoustic co-variable fi,

s0ij ¼
l
q

ofi
oxj

�
þ ofj

oxi

�
� rij; ð7Þ
rij ¼
l
q

ðu0i
�

þ UiÞ
oq0

oxj
þ q0 oUi

oxj
þ ðu0j þ UjÞ

oq0

oxi
þ q0 oUj

oxi
þ 2

3
qdij

ou0k
oxk

�
: ð8Þ

The acoustic sources are computed by the incompressible equations and the viscous term in the perturbed

equations is used to stabilize the inviscid perturbed equations.

Closure of the formulation is accomplished by the approximation that, for a general airflow,

c2 ¼ cp
q

¼ cðP þ p0Þ
q0 þ q0 ;

where c ¼ 1:4 is the ratio of specific heats.

Now we consider the boundary conditions. At the far-field of the computational domain, the 2D

acoustic waves can be considered as cylindrical waves and the leading terms may be written in the form,

f ðr � ðun þ cÞt; hÞ=
ffiffi
r

p
, where n is the normal direction out of the domain, un ¼~u �~n, and r is the distance

between the far-field boundary and the body center. For more details, the reader is referred to Tam and

Webb [8]. The boundary conditions become

oq0

ot
þ ðcþ unÞ

oq0

on

�
þ q0

2r

�
¼ 0; ð9Þ
ou0i
ot

þ ðcþ unÞ
ou0i
on

�
þ u0i
2r

�
¼ 0; ð10Þ
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op0

ot
þ ðcþ unÞ

op0

on

�
þ p0

2r

�
¼ 0: ð11Þ

At outflow boundaries, where the acoustic waves are combined with vorticity waves, the acoustic velocity

boundary conditions are changed as

ou0i
ot

þ un
ou0i
on

þ 1

q0

op0

oxi
¼ 0: ð12Þ

At wall boundaries, boundary conditions for inviscid perturbed equations are

~u0 �~n ¼ 0 or ~f �~n ¼ 0; ð13Þ
op0

on
¼ � fsðUs þ u0sÞ þ q0Usu0s

R
¼ � qðu0sÞ

2

R
; ð14Þ

where~s is the tangential direction and R is the radius of curvature. The boundary condition for q0 is ex-

trapolated from interior points.

The wall boundary conditions for viscous perturbed equations are no-slip conditions (~u0 ¼ 0 or ~f ¼ 0).

The boundary conditions for q0 and p0 are extrapolated from interior points.
3. Numerical discretization

The numerical discretization for both the incompressible flow equations and the perturbed equations is

based on a cell-centered finite volume method, which is second order accurate in time and space Oðdt2; dx2Þ.
The incompressible flow equations are solved by the cell-centered finite-volume/multi-block based code

EllipSys. For further details, the reader is referred to Michelsen [19] and Sørensen [20]. In this section, we

consider the discretization of the perturbed equations. The perturbed equations can be discretized using the
SIMPLE method in [17] or the SIMPLEC method in [18]. Here we describe only the SIMPLE method. It

consists of a predictor and a corrector step, as shown in the following.

3.1. Predictor step

The acoustic momentum equations, Eq. (5), are discretized at time level ðnþ 1=2Þdt using a second-

order semi-implicit Crank–Nicolson scheme in time for both convection and normal diffusion terms. The

spatial resolution is based on a second-order central difference scheme for the diffusion terms and the
QUICK upwinding scheme for the convection terms. The resulting equations for each cell can be written

as

2J
dt

�
þ AP

�
f �
x;P þ

X
EWNS

Aif �
x;i ¼

2J
dt

�
� AP

�
f n
x;P �

X
EWNS

Aif n
x;i þ 2Snþ1=2

x;P � 2ygp
0;n
n þ 2ynp0;ng ; ð15Þ
2J
dt

�
þ AP

�
f �
y;P þ

X
EWNS

Aif �
y;i ¼

2J
dt

�
� AP

�
f n
y;P �

X
EWNS

Aif n
y;i þ 2Snþ1=2

y;P þ 2xgp
0;n
n � 2xnp0;ng ; ð16Þ

where ðx; yÞ are Cartesian coordinates and ðn; gÞ are curvilinear coordinates, AP and Ai are the coefficients

from the spatial discretization of convection and normal diffusion, and the compass summation notation,P
EWNS, is adopted. For convenience, the mapping from the physical Cartesian domain ðx; yÞ to the
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computational domain ðn; gÞ is chosen such that dn ¼ dg ¼ 1. The acoustic pressure forces acting on a cell

of volume J are tentatively evaluated at prior time tn. Snþ1=2 contains the remaining acoustic momentum

terms including the source term oðq0Uiu0jÞ=oxj and the remaining term from the diffusion and is discretized
by using Adams–Bashforth extrapolation. Solution of Eqs. (15) and (16) yields intermediate acoustic co-

velocity components ðf �
x;P ; f

�
y;P Þ, which do not satisfy acoustic mass conservation, Eq. (4).

3.2. Corrector step

The acoustic pressure at time level ðnþ 1Þdt may be expressed as a correction p0;nþ1 ¼ p0;n þ app00 where ap
is the under-relaxation parameter for pressure. From the heuristic analysis of Ferziger and Peric [21], the

under-relaxation parameter has no global optimal value for unsteady computations and the value differs
from point to point. For convenience, ap is set equal to unity as for the unsteady SIMPLEC scheme. The

acoustic co-velocity components are corrected as

f nþ1
x ¼ f �

x þ f 0
x ¼ f �

x � ðyg=A�
P Þp00n þ ðyn=A�

P Þp00g ; ð17Þ
f nþ1
y ¼ f �

y þ f 0
y ¼ f �

y þ ðxg=A�
P Þp00n � ðxn=A�

P Þp00g ; ð18Þ

where A�
P ¼ AP þ 2J=dt. For notation simplicity, an orthogonal mesh is considered.

In order to drive the pressure correction equation, we consider the mass conservation, Eq. (4), and

correlation equation, Eq. (6), together. We get

1

c2
op0

ot
þ ofi
oxi

¼ � 1

c2
oP
ot

: ð19Þ

Inserting the pressure correction and acoustic co-velocity corrections, Eqs. (17) and (18), the pressure

correction equation is obtained:

Jp00

c2dt
þ o

on
B
A�
P

op00

on

� �
þ o

og
C
A�
P

op00

og

� �
¼ � JðPnþ1 � PnÞ

c2dt
�

X
e;w;n;s

G�
i ; ð20Þ

where B ¼ �ðx2g þ y2gÞ and C ¼ �ðx2n þ y2nÞ. The mass flux across the cell faces, G�, is computed as

G�
e ¼

2J=dt � AP

A�
P

� �
je Gn

e þ He þ
B
A�
P

� �
je ðp0;nE � p0;nP Þ; ð21Þ

where H is the flux computed from the auxiliary acoustic co-velocity ðf̂x; f̂yÞ

f̂x;P ¼ �
X
EWNS

Ai

A�
P

ðf �
x;i þ f n

x;iÞ þ
2Snþ1=2

x;P

A�
P

; ð22Þ
f̂y;P ¼ �
X
EWNS

Ai

A�
P

ðf �
y;i þ f n

y;iÞ þ
2Snþ1=2

y;P

A�
P

: ð23Þ

After the acoustic pressure has been corrected, the acoustic density is updated from

q0;nþ1 ¼ q0;n þ p0;nþ1 þ P 0;nþ1 � p0;n � P 0;n

1:5c2 jn �0:5c2 jn�1
: ð24Þ
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The acoustic velocity is obtained through the definition of acoustic co-velocity fi:

u0;nþ1
i ¼ f nþ1

i � q0;nþ1Unþ1
i

q0 þ q0;nþ1
: ð25Þ

The acoustic sound speed is computed by

cnþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðPnþ1 þ p0;nþ1Þ

q0 þ q0;nþ1

s
: ð26Þ
3.3. Grid arrangement

The flow solver EllipSys is a parallelized CFD code based on multi-block strategy. In order to exploit the

power of parallel computing, the acoustic part is parallelized in the same way as the flow solver. As the

physical behavior of fluid flow and acoustic waves are different, different mesh strategies are utilized. A

mesh resolving well viscous flows has concentrated points in the viscous boundary layer and wakes, and few

points or coarse points in the rest of domain. In contrast, to describe acoustic waves, relatively more points

are needed in the far-field. On the other hand, a less concentrated distribution of mesh points in the viscous

boundary layer is needed. After generating a mesh for flow computations, the acoustic mesh can be ob-
tained making the following transformations to the flow mesh: (a) in near-wall blocks the mesh is moved a

little away from the wall region into outer region, in other words the mesh stretching is reduced; (b) in far-

field blocks the points are mapped and concentrated in a relatively smaller region, and/or additional blocks

in the far-field are added.
4. Numerical results and discussion

In the following, the described method is applied for laminar flows past a circular cylinder and a NACA

0015 airfoil at Mach number M ¼ 0:2, and for laminar airfoil flows interacting with a vortical gust at Mach

number M ¼ 0:5.
4.1. Cylinder flow

In this section, the flow past a circular cylinder at Reynolds number Re ¼ 200 andM ¼ 0:2 is considered.
This flow has previously been computed using a staggered method [14]. The computational region for both

incompressible and acoustic computations ranges 45 cylinder diameters away from the cylinder, and is

covered by an O-mesh consisting of 192 cells in tangential direction and 128 cells in radial direction (i.e.

192� 128). The mesh is equidistant in the tangential direction and stretched in the radial direction. The

dimensionless time step is dt ¼ 0:0025, based on cylinder diameter and free-stream velocity.
The incompressible computation is started before the acoustic computation. After a non-dimensional

time of t ¼ 200, an incompressible periodic state is fully established. The lift force of the incompressible

solution computed on the original mesh (OM) of 192� 128 is compared to that obtained on a finer

mesh (FM) with double as many mesh points in each direction, 384� 256. The difference in amplitude,

defined as ½ð:ÞFM � ð:ÞOM�=ð:ÞFM, is 3.6%. The frequency obtained on the fine mesh is 0.195 whereas the

one from the OM is 0.1922. The difference is 1.436%. The same phenomenon is seen in the drag plot

(not shown). The difference of mean drag force is 0.23%.

From this we conclude that the OM is sufficient for resolving the flow field.
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4.1.1. Inviscid acoustic computations

To compare the viscous model with the former inviscid model on collocated grids, we first perform

inviscid acoustic computations with slip boundary conditions. Normalized fluctuating pressure ðp � p0Þ=p0
at ðx; yÞ ¼ ð0; 20Þ computed on the OM is plotted in Fig. 1. The acoustic pressure becomes periodic after

t ¼ 500. The signal is dominated by the Strouhal frequency, but a small irregularity is seen. The mean

amplitude of the signal is about 20% higher than that obtained using the staggered method [14]. In order to

judge the quality of the computational results, an additional computation on the fine mesh is carried out.

The normalized fluctuating pressure at the same position is plotted in Fig. 2. The signal is still dominated by

the basic Strouhal frequency, but a stronger irregularity of the acoustic pressure is clearly seen.
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Fig. 1. Normalized fluctuating pressure ðp � p0Þ=p0 at ðx; yÞ ¼ ð0; 12Þ for laminar flow past a circular cylinder at Re ¼ 200 and

M ¼ 0:2. Inviscid acoustic computation on a mesh of 192� 128.
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Fig. 2. Normalized fluctuating pressure ðp � p0Þ=p0 at ðx; yÞ ¼ ð0; 12Þ for laminar flow past a circular cylinder at Re ¼ 200 and

M ¼ 0:2. Inviscid acoustic computation on a mesh of 384� 256.
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4.1.2. Viscous acoustic computations

Viscous acoustic computations with no-slip boundary conditions are now performed. The normalized

fluctuating pressure ðp � p0Þ=p0 at ðx; yÞ ¼ ð0; 20Þ computed on the OM is plotted in Fig. 3. The acoustic
pressure becomes periodic after t ¼ 500. Comparing to the inviscid result (Fig. 1), the acoustic signal is

more regular. In order to quantify the grid dependency, computations are performed on the FM. The

normalized fluctuating pressure at the same position is plotted in Fig. 4. Comparing the signal with the one

obtained on the OM, the amplitude is seen to be increased by 1.35%, which is almost the same amplitude as

that obtained by the staggered method [14]. Moreover, the acoustic solution now becomes periodic on the

fine mesh.

The acoustic pressure is plotted in Fig. 5. From the figure, the acoustic waves are seen to propagate

preferably from the cylinder along the normal direction of the flow. There are about two crests in the
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Fig. 3. Normalized fluctuating pressure ðp � p0Þ=p0 at ðx; yÞ ¼ ð0; 12Þ for laminar flow past a circular cylinder at Re ¼ 200 and

M ¼ 0:2. Viscous acoustic computation on a mesh of 192� 128.
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Fig. 4. Normalized fluctuating pressure ðp � p0Þ=p0 at ðx; yÞ ¼ ð0; 12Þ for laminar flow past a circular cylinder at Re ¼ 200 and

M ¼ 0:2. Viscous acoustic computation on a mesh of 384� 256.



Fig. 5. Instantaneous plot of fluctuating pressure, p0, for laminar flow past a circular cylinder at Re ¼ 200, M ¼ 0:2 and t ¼ 700.
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normal direction of the computational domain that corresponds to about 64 grid points per wavelength on

the average. The directivity pattern of the cylinder noise radiation at M ¼ 0:2, measured at a distance

d ¼ 20 diameters from the cylinder center, is shown in Fig. 6. From the figure, the radiation is symmetric

and a peak radiation in the cylinder wake, corresponding to the vorticity wave can be seen. The levels range

from 100 to 124 dB with a reference of 2� 10�5 Pa.
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Fig. 6. Directivity pattern of circular cylinder noise radiation at Re ¼ 200, M ¼ 0:2 and d ¼ 20.
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4.2. Airfoil flow

In order to analyze acoustic waves generated by vortex shedding from an airfoil, laminar flow past a
NACA 0015 airfoil at Re ¼ 300, incidence 20� and M ¼ 0:2 is computed. The incompressible solution is

calculated on a 192� 128 O-grid generated by conformal mapping in a domain of radius equal to about

50 chord lengths. The acoustic solution is performed on an O-grid consisting of 192� 128 cells in a

domain of radius equal to about 25 chord lengths. The acoustic mesh has less points in the airfoil

boundary region and more points in the far-field. The dimensionless time step is dt ¼ 0:0004, based on

airfoil chord and free-stream velocity.

The incompressible computation is again started before the acoustic computation to eliminate acoustic

transients. After a dimensionless time of t ¼ 80, an incompressible periodic state is fully established. The
lift force of the incompressible solution computed on the OM of 192� 128 is compared to that obtained

on a FM with double as many mesh points in each direction, 384� 256. The mean value of lift computed

on the fine mesh is 0.3756. The difference in mean lift between the fine and OMs, defined as

½ð:ÞFM � ð:ÞOM�=ð:ÞFM, is 1.98%. The difference in lift amplitude is 10.8%. The frequency obtained on the
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Fig. 7. Normalized pressure ðp � p0Þ=p0 at r ¼ 12 for laminar flow past a NACA 0015 airfoil at Re ¼ 300, incidence 20� and M ¼ 0:2,

measured at ðx; yÞ ¼ ð12; 0Þ, (0,12) and ð0;�12Þ. Inviscid acoustic computation on a mesh of 192� 128.
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fine mesh is 0.435 whereas the one from the OM is 0.427. The difference is 1.84%. The same phenomenon

is seen in the drag plot. The difference of mean drag force is 0.05%.

From this we conclude that the OM is sufficient for resolving the flow field.

4.2.1. Inviscid acoustic computations

To compare the viscous model with the former inviscid model on collocated grids, we first perform

inviscid acoustic computations with slip boundary conditions. Normalized fluctuating pressure ðp � p0Þ=p0
at ðx; yÞ ¼ ð12; 0Þ, ð0; 12Þ and ð0;�12Þ computed on the OM is plotted in Fig. 7. From the figure, an

amplification of the acoustic pressure is seen. At the beginning of the acoustic computation, the Strouhal

frequency is found. Later, the acoustic solution becomes irregular due to interpolation errors at wall

boundaries.

4.2.2. Viscous acoustic computations

Viscous acoustic computations with no-slip boundary conditions are now performed. The normalized

fluctuating pressure ðp � p0Þ=p0 at ðx; yÞ ¼ ð12; 0Þ, ð0; 12Þ and ð0;�12Þ computed on the OM is plotted in
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Fig. 8. Normalized pressure ðp � p0Þ=p0 at r ¼ 12 for laminar flow past a NACA 0015 airfoil at Re ¼ 300, incidence 20� and M ¼ 0:2,

measured at ðx; yÞ ¼ ð12; 0Þ, (0,12) and (0,)12). Viscous acoustic computation on a mesh of 192� 128.
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Fig. 8. The acoustic pressure becomes periodic after t ¼ 160. Comparing the acoustic signal with the one

obtained in [15], the pressure signal has the same order of magnitude. In order to quantify the grid de-

pendency, computations are performed on the fine mesh. The normalized fluctuating pressure at the same
positions is plotted in Fig. 9. Comparing the signal computed with the one obtained on the OM, the

amplitude is seen to be increased by 9.15%.

The acoustic pressure is plotted in Fig. 10. From the figure, the waves are moving in the normal di-

rection away from the airfoil surface. Due to the waves being generated mainly by the vortex shedding

process, waves move at opposite phase on the upper and lower side. Hence, at a direction of approxi-

mately 10�, the acoustic waves are extinguished. There are about three crests in the normal direction of

the computational domain that corresponds to about 43 grid points per wavelength on the average. The

directivity pattern of the cylinder noise radiation at M ¼ 0:2, measured at a distance d ¼ 12 chords from
the airfoil center, is shown in Fig. 11. From the figure, the radiation is symmetric about the line of about

10� before the airfoil and almost symmetric about the inflow direction in the wakes. A peak radiation in
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Fig. 9. Normalized pressure ðp � p0Þ=p0 at r ¼ 12 for laminar flow past a NACA 0015 airfoil at Re ¼ 300, incidence 20� and M ¼ 0:2,

measured at ðx; yÞ ¼ ð12; 0Þ, (0,12) and ð0;�12Þ. Viscous acoustic computation on a mesh of 384� 256.



Fig. 10. Instantaneous plot of fluctuating pressure, p0, for laminar flow past a NACA 0015 airfoil at Re ¼ 300, M ¼ 0:2 and t ¼ 240.
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the airfoil wake, corresponding the vorticity wave can be easily seen. The levels range from 78 to 108 dB

with a reference of 2� 10�5 Pa.

4.3. Airfoil–Gust interaction

The interaction of a vortical gust with a finite thickness airfoil represents an important issue for methods

of broadband airfoil noise prediction. The vortical gust problem has previously been studied by Scott and
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Fig. 11. Directivity pattern of NACA 0015 noise radiation at Re ¼ 300, M ¼ 0:2 and d ¼ 12.
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Atassi [22], and Lockard and Morris [23]. In order to compare with the results obtained by Lockard and

Morris [23], a plane vortical disturbance of the form

v ¼ a1U1 cos½xðx� U1tÞ�; ð27Þ

is introduced. Since the gust is essentially vortical and incompressible, the source function is included to the

incompressible equations. When the governing equations are non-dimensionalized with free-stream velocity

U1 and airfoil chord c, the incompressible equations are modified to include source terms in the form

ou
ot

. . . ¼ oW
oy

sinð2ktÞ; ð28Þ
ov
ot

. . . ¼ � oW
ox

sinð2ktÞ; ð29Þ

where

W ¼ a1
b2 � 4k2

4b2 sinð2kp=bÞ f1þ cos½bðx� x0Þ�gftanh½6ðy þ y0Þ� � tanh½6ðy � y0Þ�g; ð30Þ

defined in the range j x� x0 j 6 p=b, where ðx0; y0Þ is the center of the source, b specifies its width and

k ¼ xc=ð2U1Þ.
In the present paper, a gust is produced using the following parameters:

a1 ¼ 0:002; b ¼ 10;
x0 ¼ �1:25; y0 ¼ 0:75:

In the following, viscous computations of flows past a NACA 0012 airfoil at Reynolds number

Re ¼ 5000, Mach number M ¼ 0:5 and incidence 0� are carried out at a low frequency of k ¼ 1 and a high
frequency of k ¼ 7:85.
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Fig. 12. Instantaneous v� �v plot for a NACA 0012 airfoil; k ¼ 1, M ¼ 0:5, Re ¼ 5000 and a ¼ 0�.



362 W.Z. Shen et al. / Journal of Computational Physics 196 (2004) 348–366
4.3.1. Low frequency

A reduced frequency of k ¼ 1 is used as a first test case. Both incompressible and acoustic computations

are based on the same O-mesh consisting of 256 cells in tangential direction and 192 cells in radial direction,
located in a domain of about 10 airfoil chords.

Once the incompressible solution with the gust is established, the acoustic computation is started. In

order to get an impression of the gust, a plot of the fluctuating vertical velocity component v� �v, where �v is
the time–average velocity, is shown in Fig. 12. From the figure, a low frequency gust is seen, which interacts

with the airfoil. Due to the influence of the airfoil and viscosity, the gust form is changed in the airfoil wake.

In the plot, a small velocity fluctuation of acoustic waves is observed. In Fig. 13, the directivity of the

perturbation pressure normalized by q1U1a1, is plotted and compared to the results of Lockard and

Morris [23]. Comparing the plots, the directivity of our viscous computations is seen to be closer to their
inviscid one. In the following, jp0 j denotes the amplitude of p0. For 2D flows, the magnitude

ffiffi
r

p
jp0 j is
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Fig. 14. Surface pressure magnitude variation for a NACA 0012 airfoil; k ¼ 1, M ¼ 0:5, Re ¼ 5000 and a ¼ 0�.
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Fig. 13. Directivity variation for a NACA 0012 airfoil; k ¼ 1, M ¼ 0:5, Re ¼ 5000 and a ¼ 0�.
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almost constant at distances far away from the airfoil. In the present computation, a distance of three

airfoil-chords is chosen to get the directivity plot. The distribution of normalized surface pressures are

plotted in Fig. 14. A slightly higher surface fluctuation is seen in the middle of the airfoil, as compared to
the viscous and inviscid pressure magnitudes in [23]. Finally, in Fig. 15 a fluctuating pressure is plotted

which shows the acoustic waves generated from the airfoil interacting with the gust.

4.3.2. High frequency

As next test case, a higher reduced frequency of k ¼ 7:85 is used. Both incompressible and acoustic

computations are based on a fine O-mesh, consisting of 512 cells in tangential direction and 384 cells in

radial direction, located in a domain of about 10 airfoil chords.
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Fig. 15. Instantaneous p � �p plot for a NACA 0012 airfoil; k ¼ 1, M ¼ 0:5, Re ¼ 5000 and a ¼ 0�.
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Once the incompressible solution with the gust is established, the acoustic computation is started. A plot

of the fluctuating vertical velocity component, v� �v, is shown in Fig. 16. From the figure, it is seen that a

high frequency gust is generated and interacts with the airfoil. As in the low-frequency case, a small velocity
fluctuation due to acoustic waves is seen in the near-field. Compared to Fig. 6 in Lockard and Morris [23], a

small difference is seen in the airfoil wake due to the presence of viscosity. In Fig. 17, the directivity is

plotted and compared to the results of Lockard and Morris [23]. The comparisons are in good agreement

for x > 0, but is under-predicted when x < 0. This is because the gust is generated after the position

x ¼ �1:25. In order to include the gust in the directivity, a plot of r=c ¼ 1 is also added in the figure. Overall

the results are comparable to the inviscid directivity of [23]. Absolute values of normalized surface pressures

are plotted in Fig. 18. The magnitude of the surface pressure is close to the inviscid result in [23]. Finally, a

fluctuating pressure is plotted in Fig. 19 which shows the acoustic waves generated from the airfoil in-
teracting with the gust.
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Fig. 17. Directivity variation for a NACA 0012 airfoil; k ¼ 7:85, M ¼ 0:5, Re ¼ 5000 and a ¼ 0�.
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5. Conclusion

A numerical algorithm for acoustic noise generation, based on collocated grids is developed. The ap-

proach consists of two steps: a viscous incompressible flow part and a viscous or inviscid acoustic part.

Retaining the viscous diffusion for the acoustic part gives a much closer solution to the viscous com-

pressible solution. The acoustic algorithm can be started at any time during the incompressible compu-

tation. The computing costs are similar to what is typical for incompressible calculations.

The new model has been applied to 2D laminar flows past a circular cylinder and a NACA 0015 airfoil.

The computations show that the generated acoustic noise is dominated by the Strouhal frequency and its
harmonics.

The model has also been applied to the problem of gust–airfoil interaction. Comparisons between the

present results and those in [23] show that the model is capable of predicting the interaction with different

frequencies.
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